## Posts

Showing posts from June, 2014

### Walkers vs Surfers: the computational view.

This post is going to be highly technical and will actually speak to about 20 people in the world (if that).  So if you are a casual reader of this blog you should skip this one and instead focus on the more general considerations of the walker study as it relates to the interpretation of Quantum Mechanics

We are going to review the physics of the walker problem in the context of computational models. This will deal with the in-silico approaches to the problem and shed some light on what we call 'surfers vs walkers'.

It is also meant as a 'checkpoint journal entry' for the participants of the facebook group studying the walkers.

The walker problem

The object of study is the association of a particle and the wave it creates in a media.  We focus on the silicon walkers as observed by Couder et al and modeled by Bush et al. The physics is rather straightforward in the Newton (force/acceleration) view.  The forces are as such:

Slope force. Aka "field force". Each t…

### Superposition, Decoherence, Schrodinger's Cat and other magical lies my professors told me.

For any student of Quantum Mechanics (QM), the interpretation of the QM formalism is at first a puzzling proposal.  Simply put it is 'counter intuitive' and most people "shut up and calculate" essentially bowing to the myth that "QM is very weird".

How can things be in 'several states' at the same time. QM matter must be of a different, slightly magical, nature.  It is perhaps best exemplified by paradox of the Schrodinger cat that is both dead and alive, supposedly at the same.

In this post we will apply the formalism of walkers, an emergent model of QM dynamics that comes about from the association of a particle and a wave and show how it sheds a new light on the fundamental interpretation of QM and show that in this interpretation, the cat is simply always dead.

We will also use this formalism to shed light on the typically QM notion of coherence and decoherence.

We study the walkers by simulations and our little group operates on facebook:

A br…